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NGST “Yardstick” Concept

“Open” telescope (no 
external baffling) 
allows passive 
cooling to 50K

Deployable 
secondary
mirror

Beryllium
primary mirror

Space support module 
(attitude control, 
communications, power, 
data handling) is on warm 
side

Science
Instruments

Large (200m2) deployable 
sunshield protects from sun, 
earth and moon

Isolation truss
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contains 
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IMOS Environment
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Integrated model was applied to investigate three “focus” 
problems during concept development phase:

• thermal-elastic deformation of OTA

• line-of-sight stability (jitter)

• wavefront sensing and control (not really addressed here)
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System Error Budget Overview

System imaging performance

Stray
light

Wide-angle
scatter

Detection
effects

Jitter
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OTA figure
& alignment

IM figure
& alignment

OTA actuator
performance

Imaging
performance

OTA structure OTA optics IM structure IM opticsOTA mechanical

Encircled Energy

WF error 

WFS&C

WF C  subsystem
WFE  budget 

System
EE , SR budget 

Non-WF C  subsystem s 
WFE  budget s



6

Thermal-Elastic Analysis

• Linear Systems Model

• Optics Model

• Thermal Model

• OTA FEM

• Results for launch-to-orbit cooldown

• Results for transient (attitude re-orientation)

• Results for transient with active thermal control
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Linear  Error Model for Thermal Analysis

Linear optical model

w0 = Cx x + Cu u0

WF sensing

west = w0 + dwest

Control

u1 = -G west + du

G = Cu
+ = [Cu

TCu] -1 Cu

w

xrb

xfig

udm

useg x = 

xsegrot

xsegtrans

xIMrot

xIMtrans

xfig

u = 

usegrot

usegtrans

uSM

udm

w = 

w1

w2

wN

Alignment and figure states

Wavefront sampled at
N discrete points in the
exit pupil

Optical controls
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MACOS Ray Trace Model
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MACOS Spot Diagram
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Wavefront Error – Design Residual
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Wavefront Error – Segment Tilt
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Wavefront Error – FEM Node Translation
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X

Y

Z

OTA FEM

• 2.00mm thick face sheet by 
4cm deep core orthogrid
beryllium mirror shell

•cells are 14.5 cm on a side 
equilateral triangles,cell wall 
are 1.00 mm thick

• RBE2s used to attach SI
kinematically to center main 
ring instead of CELAS

• Three OTA to S/C I/F 
points instead of four

•The petal reaction structure is a beryllium frame-
work of I-beams

• The center segment reaction structure is a flat 
Beryllium frame with a 1.3M dia inner ring. The 
frame is composed of a 152 mm deep I-beam 
inner ring and 152mm by 100mm wide box 
section outer ring and spokes.

• recover 1044 DOFs (344 
nodes on PM, translation 
only, plus SM and SI)
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Observatory Thermal Model – Steady State
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Steady State Temps Mapped on OTA FEM
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13.21
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6.605
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0.
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Output Set: temperatures
Contour: Table Output Vector 1

Mapping made possible by one-to-one nodalization !!!
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Computing the Transformation from 
Nodal Temperatures to Displacements

λ Net Force Balance: {rnet} = 0 =  -Ku  + {rTemp} 

Where {rTemp} =  ∫ BT E {ε 0} dV =  Ku

B =  standard strain-displacement matrix
{ε0}=  temperature induced strain vector,  f (α,temp)

λ We can factor out nodal temperatures, generating a temp to load transformation matrix 

– {rTemp} =      {rg} =  [Agg] {tg} 

Where     {tg} =  nodal temperature (and/or gradient) vector (g-size)

{rg} = nodal force (and/or moment) vector (g-size)
λ Reduce [Agg] to f-set size and transform to Local (NASTRAN global) system

– [Afg] = [Tfg]  [Agg]

λ Premultipy by the flexibility matrix [Kff]-1 to get the temperature to displacement 
transformation matrix G

– [Gfg] = [Kff]-1 [Afg]

λ Expand to g-set, and transform back to the basic coordinate system

– [Ggg] = [Tfg]T [Gfg]     or

– [Ggg] = [Tfg]T [Kff]-1 [Tfg]  [Agg]

λ So we have the temperature to displacement transformation matrix

– {ug} = [Ggg]  {tg} 
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Steady State Wavefront Error with Control
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Thermal Transient following 22.5 degree slew
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• Initial attitude has sun 
normal to sunshield
• Final attitude is 22.5 
degree pitch away from sun
• Thermal equilibrium takes 
DAYS to reach
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Thermal Transient Wavefront Error – no Control
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Thermal Transient Wavefront Error with Control
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Jitter Analysis

• Pointing Control Architecture

• Linear Systems Model

• Disturbance Model

• Compensation Model

• Results for parametric studies



22

The CSI Challenge for NGST

frequency

ACS 0.025 Hz BW

Disturbances >400 Hz

FSM 2 Hz BW

Structure

sunshield
modes

isolation truss and
SM support modes

higher order
modes

• Lightweight, flexible structure with very low damping limits ACS 
bandwidth
• FSM bandwidth limited due to guiding sensor noise
• Thermal environment presents challenges to “smart structures” 
solutions for active damping and vibration suppression
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System Level Block Diagram

Optics

Wavefront

LOS Control

External
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Dynamics
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ACS uses wheels,
gyros & trackers

Image
Stabilization
loop uses
NIR & FSM

Vibration Isolation
has not been
designed in detail;
model is a LP filter
approximation
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State-Space Model
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Dynamics Model Sensor & Actuator Locations

ACS (10291)

ISIM (825)

SM (829)

PM (900-908)

These grid points are located
at the center of the primary and
in a circle with radius 2.8 meters,
connected to mirror grid points
by RBE2 elements

ST, IRU, RWA
are co-located

FSM, DM, other
optics are co-located

Model size is
~ 5400 DOF;
only 71 DOF
are required
for jitter model
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Optomechanical Analysis

Structural dynamics
(mode shapes) and
the associated
optical distortions
are displayed as
animations for
qualitative analysis

Image (log stretch) Wavefront Error

Deformed FEM
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Reaction Wheels are Dominant Disturbances
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Wheel Disturbances - Discrete Speed vs Swept Speed
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Reaction Wheel Isolation
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FSM Response Functions
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Linear Analysis - Nominal Response, Effect of Isolation, 
Effect of Wheel Imbalance Amplitude
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How Much Isolation Is Required?
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Conclusions

• Development of end-to-end models using the IMOS 
environment was relatively painless, owing to the 
following factors:

• translation from NASTRAN and SINDA was 
possible for FEM and TMM, as was output to 
FEMAP neutral format

• geometric and material properties were easily 
parameterized, as were all other significant entities 
in the models

• ray-trace code (MACOS) was open-source, so it 
could be integrated via Mex-function API

• Matlab™ is a matrix-oriented language/tool, with 
integrated graphics and visualization

• Questions remain about the ability to handle 
realistically-sized models within Matlab™ (eigenvalues, 
matrix inversion)

• None of these models have been validated, of 
course…


